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Abstract— Facial image-based age and gender classification
is a foundational problem in computer vision, yet performance
is often limited by data scarcity and privacy constraints. This
paper proposes IDiff-Face-Aged, a novel age transformation
framework that utilizes multimodal embeddings to generate
realistic and diverse facial images. Two synthetic datasets,
Fading (utilizing null text-inversion prompting) and IDiff-Face-
Aged1, were tested across various architectures, including Mul-
tiEfficientNet, MultiLightViT, and MultiMobileNet. Three age
estimation methods were used to address both continuous and
categorical intervals. Experimental results indicate that syn-
thetic data contributes to improved model accuracy, especially
by enhancing representation in under-sampled age groups.
On the UTKFace dataset, an accuracy gain of over 3% was
observed. Moreover, models trained with a mix of synthetic and
real data show stronger generalization capabilities, particularly
when datasets design and alignment are carefully managed.
These findings illustrate the potential of synthetic data to
supplement real-world datasets, while also pointing to ongoing
challenges related to data realism and artifact avoidance.

I. INTRODUCTION

Age and gender classification from facial images is a
long-standing and widely studied problem in computer vi-
sion, with applications in security, social analytics, and
personalized user experiences [1]. Estimating age and gen-
der—whether predicting chronological, appearance-based, or
perceived age—serves a broad range of real-world appli-
cations, including age-invariant face recognition, cross-age
face verification, biometric authentication, surveillance, and
customer profiling in commercial settings [1], [2]. Recent
advancements in deep learning, particularly convolutional
neural networks (CNNs) and, more recently, transformer-
based architectures, have significantly improved the perfor-
mance of age and gender classification models [3]. However,
achieving robust and generalizable models remains a critical
challenge due to inherent biases in existing datasets. Publicly
available benchmarks often exhibit imbalanced distributions,
limited intra and inter-class diversity, and restricted eth-
nic representation, all of which contribute to models that
underperform on demographically diverse populations [4].
To address these challenges, synthetic data generation has
emerged as a promising approach, leveraging generative
models such as Generative Adversarial Networks (GANs)
[5] and diffusion models (DM) [6] to create realistic face
images with controlled variations in age and gender.

This work was supported by the Portuguese Recovery and Resilience Plan
(RPP) under the program ’Agendas para a Inovação Empresarial’, reference
no. 62 - ’Center for Responsible AI’.
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This study investigates the role of synthetic aging datasets
in the performance of age and gender classification models.
Specifically, we assess how two synthetic approaches, Fad-
ing [7], which provides progressively aged faces, and IDiff-
Face-Aged, adapted from [4], affect classification accuracy
when integrated into model training. We provide visual
evaluation as well as metrics evaluation for multiple dataset
configuration, to determine the extent to which synthetic
augmentation enhances or degrades model performance on
real-world benchmarks.

Our approach offers a novel framework, IDiff-Face-Aged
for age transformation by leveraging multimodal embeddings
to guide the generation process in a semantically meaningful
manner. Unlike traditional methods that rely solely on age
estimation models, we integrate descriptive text embeddings
from Florence-2 [8] and CLIP [9] to capture richer facial
attribute representations, ensuring that the generated faces
align with the target age category. This balance between
identity consistency and transformation diversity makes our
approach particularly valuable for dataset augmentation in
age estimation tasks. Instead of enforcing strict identity
preservation, which can lead to artifacts or unrealistic trans-
formations, we encourage controlled variations that enhance
the model’s ability to generalize across different age groups.

A. Manuscript organization

This paper is structured as follows: Section II reviews
related work on age and gender classification and synthetic
data generation. Section III details the datasets, models,
and experimental setup. Section IV presents the results and
discussion, and Section V concludes with key findings and
directions for future research.

II. RELATED WORK

A review of existing literature reveals that conventional
age and gender estimation models are often trained on limited
real-world datasets, which constrains their generalization
capabilities. Recent studies have begun to explore the use
of synthetic data to augment these datasets, with promising
results in terms of improved model accuracy and general-
ization. However, there remains a need for a comprehensive
case study that evaluates the impact of synthetic data on age
and gender estimation.

A. Age and Gender estimation

Age and gender estimation from facial images has been ex-
tensively studied, with early methods relying on handcrafted
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features (e.g., LBP, HOG, Gabor filters) and traditional
classifiers like SVMs and k-NNs [1]. These approaches
have since been surpassed by deep learning models that
automatically learn hierarchical representations.

In 2015, Levi G. and Hassner T. [10] presented a sem-
inal work to explore deep learning CNN for multiclass
(age groups) and binary classification on the AdienceFaces
dataset. Liu et al. [11] used separate GoogLeNet models
for age classification and age regression. Subsequent studies
explored lightweight architectures (e.g. MobileNet, Efficient-
Net and RexNet) [12], [13], improved label distribution
learning [14], and multi-branch fusion models [15]. Addi-
tionally, advanced loss functions based on optimal transport
theory [16] and graph-based learning [17] have been pro-
posed to further enhance performance. This was followed by
attention-based methods [18], directing the model to focus on
specific age-patch features, and transformer models [19] have
been used to further refine feature extraction and aggregation.

For gender recognition, embeddings from FaceNet [20],
NN4-based networks with variational loss [21], and Pareto
frontier transfer learning approaches [22] have achieved
strong performance.

Recent studies include a moving window regression al-
gorithm for ordinal regression [23], and MiVOLO [3], a
multi-input transformer model for age and gender estimation,
integrating facial and body information. Multimodal large
language models [24] have also shown promise, but with
high computational costs.

Age estimation remains a challenging task due to its
personalized, temporal, and causal nature, compounded by
limited and biased datasets. Privacy concerns and the im-
practicality of collecting massive, diverse real-world datasets
have driven interest in synthetic data, which offers scalable
and controllable alternatives.

B. Synthetic Data - Face Aging

Synthetic data generation has become a cornerstone in
advancing face recognition and aging technologies, enabling
the creation of diverse and ethically sourced datasets. Among
the leading generative techniques are GANs, DMs and their
hybrids.

GANs have significantly advanced the generation of
highly realistic facial images like DigiFace-1M [25], Syn-
Face [26], SFace2 [27] and StyleNat [28]. Conditional GANs
incorporate age and gender cues [29], [30], [31], [32], [33],
while others use RNNs [34] or manipulate the latent space
to simulate aging [35], [36]. Techniques such as LATS [37]
and AgeSynthGAN [38] adopt style-based architectures to
handle appearance variations. However, many GAN-based
methods struggle with preserving identity, especially during
latent space inversion or extreme pose handling.

DMs, such as DCFace [39] and IDiff-Face [4], offer high-
quality synthetic faces through iterative denoising and are
promising for subtle changes like wrinkles and skin tone.
Early works like SDEdit [40], introduced text-guided editing,
while subsequent methods tried mask-conditioned edits [40],
[41], [42], to improve fine-grained details. DiffEdit [43]

improved region-specific control without the need for a user-
provided mask.

Beyond masked editing, other techniques focus on refining
text-based control. Prompt-to-Prompt [44] enables edits us-
ing slight changes on pairs of text prompts, making modifica-
tions purely through textual descriptions. Null-text inversion
[45] extends this concept to real images by optimizing the
null-text embedding. Similarly, Imagic [46] enables real-
image editing by fine-tuning the DM to preserve the input
image’s appearance and details while applying desired text-
driven modifications.

The recent Fading model [7] improves text-guided image
editing by leveraging null-text inversion and dynamically
refining latent representations for better control and iden-
tity preservation. However, it still struggles with precise
spatial control, occasionally causing unintended changes in
unrelated regions. Meanwhile, DiffAge3D [47] introduced a
3D/aware diffusion aging framework that explicitly accounts
for multi-view consistency, demonstrating superior age pro-
gression realism while preserving identity across different
viewpoints.

Hybrid models like GANDiffFace [48] combine the
strengths of both GANs and DMs. These approaches aim to
strike a balance between high-quality generation and better
control over the output, but fine-tuning such models requires
careful balancing of both components to avoid the drawbacks
of each method.

Despite these advancements, challenges remain in con-
trolling spatial edits and maintaining identity. Despite these
challenges, synthetic data generation remains a powerful tool
for training robust and fair face analysis systems.

III. METHODOLOGY

In this section, we present the methodology used to
improve age and gender estimation through the integra-
tion of synthetic data. We first describe datasets and the
identity-conditioned diffusion-based synthetic data genera-
tion pipeline, followed by the architecture and training of
the age and gender classification models.

A. Age and Gender training datasets

This project involves using multiple datasets for age and
gender classification. For training and validation, we used a
combination of FFHQ [49](#70,000), Adience [10](#26,580),
Lagenda [3](#67,159), and IMDB-WIKI [50](#500,000)
datasets, CelebAMask-HQ [51](#30,000). To further expand
data diversity, SFHQ [52](#425,000), a fully synthetic dataset
was used. The UTKFace [53](#23,491) dataset was selected
for testing due to its balanced age distribution across various
age groups [54]. This ensures a more reliable evaluation
of the models’ generalization across a broader demographic
spectrum. For datasets lacking inherent labels, such as SFHQ,
we assign labels using the InsightFace buffalo l [55] age and
gender estimation model with a human in loop to ensure
accurate annotations.

To enhance model robustness, data pre-processing in-
volved various augmentations, including resizing, cropping,
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flipping, rotation, brightness/contrast adjustments, color jit-
ter, and noise addition. Compression artifacts were intro-
duced to simulate real-world degradations. All images were
normalized using standard ImageNet statistics.

We also leveraged generative-based augmentations. DMs
outperform GANs in stability, sample quality, and control.
They avoid mode collapse, generalize better, and enable
precise conditioning. While GANs are faster, diffusion mod-
els excel in generating diverse, high-quality synthetic data,
making them ideal for bias-free AI and face synthesis [4].
In this regard, two different strategies were employed: one
based on the IDiff-Face [4] with attributes controlling and
another using the multimodal Fading [7], model with null
text inversion and prompt-to-prompt editing for localized
modifications.

IDiff-Face was chosen as the baseline method for dataset
augmentation over alternative approaches due to its ability
to generate diverse, bias-free, realistic facial variations [4].
While our method, built upon IDiff-Face, does explicitly
focus on guaranteeing perfect identity preservation, it con-
ditions the generation process on identity-related features,
ensuring that the transformed faces share structural and
contextual similarities with the reference. Additionally, by
introducing new variations, it enhances the model’s ability to
learn distinct aging patterns. This identity-conditioned DM
leverages an identity encoder with previously extracted iden-
tity representations, providing a stronger basis for identity-
aware synthesis. To guide age transformations, we condi-
tioned the model on learned aging representations rather
than relying solely on a pre-trained age estimation model.
Specifically, we used the Florence-2 [8] multimodal model
to generate descriptive captions for each image, capturing
semantically rich details about facial attributes, including age
and gender. These captions were encoded using a pre-trained
CLIP text encoder, yielding text embeddings that offer a
more context-aware representation of age progression. By
incorporating these embeddings, our method intends to align
generated faces with the target age category in a semantically
meaningful manner.

1) Implementation details for IDiff-Face-aged: In train-
ing, we applied paired embeddings corresponding to the
target age and gender. During the sampling process, age
adjustment was performed by retrieving the embeddings
corresponding to an identity of the target age (e.g., 5 years
old) and gender (e.g., male), and combining them with a
reference image embedding (e.g., a 15-year-old male).We
then computed the cosine distance between the reference
embeddings and the target age embeddings, selecting those
with the smallest distance to ensure the age transformation
was realistic. This procedure is explained in III-A.1. While

this process encourages identity consistency, it does not
enforce strict identity preservation, meaning the generated
faces may exhibit variations beyond age transformation.
To mitigate excessive aging features drift, we limited the
selection process to adjacent age groups, ensuring gradual
and plausible aging effects.

Algorithm 1 Sampling for Age Transformation
Require: Reference image embeddings: eref , Target age group:

agetarget, Target gender group: gendertarget
Ensure: Transformed image embeddings etransformed

1: Generate descriptive captions for each image using the
Florence-2 model.

2: Tokenize and encode captions using the CLIP text-encoder to
obtain text embeddings etext.

3: Compute cosine distance between reference embeddings eref

and identity embeddings of images within the target age and
gender group:

d(eref , etarget) = 1− eref · etarget

∥eref∥∥etarget∥
4: Select identity embeddings with the smallest cosine distance:

eselected = arg min
etarget

d(eref , etarget)

5: Retrieve the text embeddings corresponding to the index of
eselected.

6: Concatenate the PCA-transformed text embeddings a
with the reference identity embeddings: etransformed =
Concat(eref ,a)

Our data-driven method involved selecting the most sim-
ilar embeddings from the target age group, allowing us to
create age transformations that were both coherent with
the original identity and consistent with the desired age
progression. This approach enabled us to effectively manip-
ulate age while preserving essential facial features, yielding
high-quality identity aging transformations. Fig. 1 shows the
proposed pipeline for the new text-conditioned context for
age-controlled sampling between reference IDi and IDj ,
where i ̸= j.

Fading enables localized facial attribute editing by utiliz-
ing text prompts and visual features within a multimodal dif-
fusion process. This model requires carefully crafted prompts
to guide modifications, making it highly sensitive to the
wording and structure of the input. In the prompt-to-prompt
editing approach, the model progressively refines the image
by iteratively adjusting features according to successive
text prompts. This editing occurs within the cross-attention
mechanism, where the model attempts to align specific words
with the corresponding image features encoded by the vision
model. However, this process is highly sensitive to changes
in phrasing, leading to different activations in iterations.
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Fig. 1. Flowchart of the training and sampling procedures to generate the
new context for the conditional diffusion model IDiff-Face [4].

Additionally, Fading lacks spatial constraints, meaning that
certain words or prompts can trigger unintended changes to
unrelated facial regions, especially when attributes are not
adequately disentangled. The strict dependency on precise
prompting can result in inconsistencies, as minor variations
between successive prompts may lead to unexpected and
sometimes undesirable changes in the generated output [7].

B. Gender and Age classification

To evaluate the impact of synthetic data on lightweight
real-time models for gender and age classification, we em-
ployed a shared backbone with task-specific classification
heads. This approach ensures efficient feature extraction
while allowing for independent optimization of each task.

We conducted experiments using three lightweight
backbone architectures: EfficientNet-B0, MobileNet, and
LightViT-Small. These models were chosen for their compu-
tational efficiency and suitability for real-time applications.
Each backbone was paired with distinct classification heads,
specifically designed for gender classification (binary) and
age classification (multi-class, with 8/10/13 categories). Age
was treated as a classification problem rather than a re-
gression task due to several key advantages: classification
enhances model stability by grouping age into discrete
categories, making it more robust to noise and outliers.
It also improves interpretability, as age categories provide
clearer insights compared to continuous age predictions.
Furthermore, classification aligns better with real-world ap-
plications, where age is often grouped into ranges (e.g., 18-
24, 25-34). This approach also reduces model complexity,
resulting in faster training times and better performance,
particularly in edge cases. Our approach allows for a direct
comparison of how various backbone architectures utilize
synthetic data for soft-biometric estimation.

IV. RESULTS AND DISCUSSION

In this section we present the results and discussion of
synthetic data generation using the two models: IDiff-Face-
Aged and Fading, as well as the impact of synthetic data on
the age and gender classification models.

A. Synthetic data generation

To enhance data diversity, we employed two distinct
datasets for augmentation, leveraging their unique strengths
to improve model robustness through complementary feature
manipulation strategies.

The Fading approach utilizes CelebA-HQ [51], a high-
resolution facial image dataset that emphasizes photoreal-
ism and diverse environmental conditions. This dataset is
particularly suitable for Fading, as its rich visual details
enable controlled modifications—such as changes in lighting,
texture, and subtle facial cues—without compromising image
realism. These samples were generated for 13 different ages
(10, 14, 18, 23, 28, 33, 38, 43, 48, 53, 58, 64, 70 years
old). We generated around 70,000 samples for about 5,400
identities. Some examples can be seen in Fig. 2.

Fig. 2. Samples for Fading generated samples, their reference images (red-
squared), and cosine similarities.

For the IDiff-Face-Aged method, we selected SFHQ [52],
a dataset characterized by comprehensive identity anno-
tations, a large number of samples, and consistent facial
features. This dataset facilitates the employed augmentation
strategy by providing a broader search space, thereby intro-
ducing greater feature diversity. Specifically, we generated
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approximately 50,000 synthetic samples of shape 224× 224
from an original dataset of over 400,000 samples, prioritizing
the augmentation of underrepresented age groups (particu-
larly younger ages). Some examples are shown in Fig. 3.

Fig. 3. Samples for IDiff-Face-Aged method, their reference and target
images, and cosine similarities.

To evaluate the effect of synthetic data augmentation,
we analyze the cosine similarity between each generated
sample and its corresponding reference. This was calculated
on the identity embeddings extracted with the proprietary
face matching algorithm.

The generated samples demonstrate that while some ref-
erence features are preserved, there is a noticeable shift in
facial structures, resulting in increased intra-class diversity.
This is evident in the last two rows of the sample images,
where the same reference image is used with different
target age groups, demonstrating greater variability in the
transformations. The relatively lower cosine similarity scores
further support this observation, indicating that the generated
faces introduce more substantial modifications. However,
this approach still exhibits some stability issues, particularly

when attempting to produce an age-modified version that
closely resembles the reference image. As seen in the third
row, the difficulty in maintaining consistency across groups
with significantly different age-related characteristics may be
contributing to this instability.

Fig. 4 presents the distribution of cosine similarity scores
between generated samples and their corresponding reference
images in the Fading (continuous line) and in the IDiff-
Face-aged (dashed line). This distribution indicates that the
IDiff-Face-Aged may be potentially useful for diverse age
transformation while Fading samples may be preferable in
applications requiring closer resemblance to the original
sample. As depicted, IDiff-Face-Aged produces a unimodal
distribution of cosine similarity scores, with a mode around
0.3. This suggests that our method consistently generates
augmented samples that exhibit a specific degree of differ-
ence from the original images in the chosen feature space. By
generating samples with this degree of dissimilarity, IDiff-
Face-Aged may be particularly effective in forcing the age
estimation model to learn features that are invariant to minor
variations while being sensitive to more significant age-
related changes. In contrast, the FADING method yields a
bimodal distribution of cosine similarity scores. One peak is
located at a very high similarity (close to 1.0), suggesting that
FADING frequently produces samples that are highly similar
to the original. The second is at lower similarity values
(around 0.6-0.7). This bimodal nature implies that FADING
generates augmentations with two distinct characteristics:
many samples retain a very strong resemblance to the orig-
inal, while others exhibit a more noticeable difference. The
high similarity peak suggests that many augmented samples
might offer limited benefit for training robustness, as they are
very close to the originals. Visual inspection of the generated
samples, Fig. 2, indicates that, although this method exhibits
improved identity preservation, it occasionally suffers from
structural inconsistencies, particularly in specific age groups.
For instance, some samples fail to remove age-inconsistent
features (e.g., beards in younger generations), suggesting
that the model lacks adaptability in certain transformations.
Additionally, the observed decrease in cosine similarity for
extreme-age transformations implies that the model may rely
on modifying a fixed set of features rather than adapting dy-
namically to different identities. This could result in limited
diversity in age-specific edits, as the modifications appear
relatively consistent across different individuals.

B. Age and Gender Experiments

Regarding the age and gender classification, different
training and validation groups were created, with different
amount of synthetic samples and sources, and then tested on
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Fig. 4. Distribution of cosine similarity scores for both models’ generated
samples and their reference images.

UTKFace. For improved readability, the following acronyms
are used to refer to the dataset sources: I: IMDB-WIKI - L:
Lagenda - A: Adience - F: FFHQ - Ia: IDiff-Face-aged - C:
CelebA-HQ - Fa: Fading - S: SFHQ.

We defined three distinct classification scenarios to sys-
tematically evaluate age and gender estimation performance
under varying levels of granularity. The first scenario adheres
to the categorical age groups from the Adience dataset
(Table I), serving as a benchmark for comparison with
existing approaches. This differs from the others because all
ages are not presented in the age groups. The second sce-
nario (Table II) utilizes a continuous class labeling scheme,
enabling a finer-grained representation of age progression.
The third scenario (Table III) merges early-age classes from
the continuous labeling approach, aligning with practical
applications where broader age group distinctions are more
meaningful. For the experiments, all include IMDB-WIKI,
Lagenda and Adience, because they are among the largest
and most diverse publicly available datasets. To maintain a
focused evaluation, we selectively chose dataset combina-
tions, excluding those that performed poorly in initial simpler
tests. These tables demonstrate the performance of various
models on age and gender classification tasks - accuracy
(Acc), precision (P), recall (R), and F1-score (F1), trained
with different datasets and augmentation strategies.

Table I, shows that gender classification achieves high
accuracy across all models, with Acc ranging from 91.84% to
94.17%. This suggests that gender classification is relatively
robust to variations in dataset composition and augmentation
strategies. Geometric augmentations (+) slightly enhances
performance, but the most significant improvements stem
from the model itself, with MultiLightViT achieving the
highest accuracy.

In contrast, age classification presents a more complex
challenge, with accuracies ranging from 62.99% to 69.38%,
and precisions above 71%. Among the models, Multi-
LightViT stands out with the highest accuracy at 69.38%,
highlighting the impact of model architecture in handling
the complexities of age classification. These results also un-
derscore the importance of dataset composition, particularly
the significant improvements when the FFHQ (ILAF subset)
was included. This table serves as a general evaluation to
benchmark models and establish the best baseline datasets
for more intricate and complex age classification scenarios,
where synthetic data was not used.

Table II presents results for continuous age classification
across 13 classes. Again, MultiLightViT outperforms other
models in both gender and age classification tasks. The
combination of augmentations (ILAF +) achieves the best
performance for MultiLightViT, with 95.43% Acc for gender
classification and 48.23% for age classification.

The results also highlight the importance of the quality
and diversity of the datasets used for training and testing.
The combination of datasets (ILAFIaCFaS +) yields an
Acc of 94.35% for gender classification and 44.83% for
age classification for the MultiMobileNet model, but the
age performance is lower than that of the combination of
only real-world augmentations (ILAF +). As shown by the
ILAFIaCFaS subset, over-representation of synthetic data can
cause the model to under-perform on real-world datasets.
This suggests that synthetic data, while useful for balancing
datasets and capturing diverse features, still struggle to model
real-world facial aging characteristics that are crucial for
distinguishing adjacent age groups.

In the 10-class age classification scenario (Table III),
where ages under 14 are grouped together into a single
class due to their practical limited usage and their face fea-
tures similarity, gender accuracy remains consistently high,
between 93.59% and 95.66%. These results show balanced
performance across models, with minimal disparity in gender
classification accuracy. In contrast, age classification presents
a more challenging task, with accuracies ranging from
around 48% to 53.79%. MultiLightViT tends to outperform
MultiMobileNet in this domain, highlighting its superior
capability in handling the nuances of age categorization.
The lower F1-scores compared to accuracy metrics suggest
potential difficulties in accurately classifying certain age
groups or distinguishing between adjacent age ranges. The
improved performance of MultiLightViT with more synthetic
data, particularly in subsets ILAFIaS and ILAFCFaS, can be
attributed to the additional samples generated for the under-
14 age group. This synthetic data helps balance the dataset
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TABLE I
PERFORMANCE COMPARISON OF VARIOUS MODELS FOR GENDER (0, 1) AND AGE CLASSIFICATION (0-2, 4-6, 8-13, 15-20, 25-32, 38-43, 48-53,

60-), INCLUDING ACCURACY, PRECISION, RECALL, AND F1-SCORE METRICS, WITH (+) AND WITHOUT(-) GEOMETRIC AUGMENTATIONS.

Dataset Model Gender Age
Acc (%) P (%) R (%) F1 (%) Acc (%) P (%) R (%) F1 (%)

ILA - MultiMobileNet 91.84 91.84 91.84 91.84 62.99 66.87 62.99 64.19
ILA + MultiMobileNet 92.02 92.03 92.02 92.02 64.22 67.70 64.22 65.34

ILAF +
MultiMobileNet 92.70 92.70 92.70 92.70 64.69 68.04 64.69 65.92

MultiEfficientNet-b0 93.80 93.81 93.80 93.80 66.15 71.04 66.15 67.75
MultiLightViT 94.17 94.18 94.17 94.17 69.38 71.60 69.38 70.26

TABLE II
CONTINUOUS AGE GROUPS: PERFORMANCE COMPARISON OF VARIOUS MODELS FOR GENDER (0, 1) AND CONTINUOUS AGE CLASSIFICATION (0-3,

4-7, 8-12, 13-14, 15-20, 21-24, 25-32, 33-37, 38-43, 44-47, 48-53, 54-59, 60-100), INCLUDING ACCURACY, PRECISION, RECALL, AND F1-SCORE

METRICS WITH (+) GEOMETRIC AUGMENTATIONS.

Dataset Model Gender Age
Acc (%) P (%) R (%) F1 (%) Acc (%) P (%) R (%) F1 (%)

ILAF +
MultiMobileNet 93.57 93.57 93.57 93.57 47.75 45.66 47.75 44.41

MultiEfficientNet-b0 95.28 95.28 95.28 95.28 48.88 47.92 48.88 46.84
MultiLightViT 95.43 95.44 95.43 95.43 48.23 48.60 48.23 47.57

ILAFIa + MultiMobileNet 94.77 94.78 94.77 94.77 46.87 46.69 46.87 45.62
MultiLightViT 95.40 95.44 95.40 95.40 48.01 47.12 48.01 46.60

ILAFIaCFa + MultiLightViT 95.36 95.36 95.36 95.36 48.10 48.37 48.10 46.63

ILAFIaS + MultiMobileNet 95.11 95.12 95.11 95.11 47.03 47.01 47.03 45.97
MultiLightViT 95.32 95.33 95.33 95.32 48.09 47.09 48.09 46.86

ILAFCFaS + MultiMobileNet 94.20 94.21 94.20 94.20 45.84 45.56 45.84 44.10
MultiLightViT 95.30 95.30 95.30 95.30 47.17 47.13 47.17 46.18

ILAFIaCFaS + MultiMobileNet 94.35 94.35 94.35 94.35 44.83 44.94 44.83 43.38

and aids the model in generalizing better to real-world data.
Overall, our findings underscore the complexity of age

and gender classification and the interplay between model ar-
chitecture, dataset composition, and augmentation strategies.
While gender classification remains relatively stable across
different models and dataset variations, age classification
presents greater challenges due to the fine-grained nature of
age progression, the domain gap between synthetic and real-
world data. The inclusion of synthetic datasets such as Fading
and IDiff-Face-Aged provides valuable age-related varia-
tions, helping models capture aging patterns more effectively.
However, their impact is highly dependent on how well
the synthetic data aligns with real-world distributions. Our
results suggest that while synthetic data can enhance model
generalization, an excessive reliance on it may introduce
biases that reduce real-world performance, and temporal
age progression may introduce biases and artifacts on aging
features that do not improve performance.

V. CONCLUSIONS AND FUTURE WORKS
This study highlights the substantial impact of dataset

composition, augmentation strategies, and the integration of
synthetic data on the performance of age and gender classi-
fication models. Results show that carefully combining real

and synthetic datasets—particularly those like Fading and
IDiff-Face-Aged that offer structured aging patterns—can
significantly boost classification accuracy and model gener-
alization.
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TABLE III
EARLY AGES GROUPING: PERFORMANCE COMPARISON OF VARIOUS MODELS FOR GENDER (0, 1) AND CONTINUOUS AGE CLASSIFICATION (0-14,

15-20, 21-24, 25-32, 33-37, 38-43, 44-47, 48-53, 54-59, 60-100), INCLUDING ACCURACY, PRECISION, RECALL, AND F1-SCORE METRICS WITH (+)
GEOMETRIC AUGMENTATIONS.

Dataset Model Gender Age
Acc (%) P (%) R (%) F1 (%) Acc (%) P (%) R (%) F1 (%)

ILAF +
MultiMobileNet 94.34 94.38 94.34 94.34 51.08 49.52 51.08 49.46

MultiEfficientNet-b0 95.06 95.06 95.06 95.06 50.62 50.28 50.62 49.79
MultiLightViT 95.14 95.17 95.14 95.13 51.08 49.52 51.06 49.44

ILAFIa + MultiMobileNet 94.47 94.47 94.47 94.47 51.48 50.59 51.48 50.19
MultiLightViT 95.36 95.37 95.36 95.36 52.64 50.75 52.62 50.63

ILAFFa + MultiMobileNet 94.06 94.13 94.06 94.06 48.28 47.75 48.28 47.33

ILAFIaCFa + MultiMobileNet 94.48 94.49 94.48 94.48 50.82 49.23 50.82 49.01
MultiLightViT 95.38 95.39 95.38 95.38 49.60 50.45 49.60 49.51

ILAFIaS + MultiMobileNet 94.28 94.33 94.28 94.28 51.67 49.84 51.67 49.58
MultiLightViT 95.66 95.66 95.66 95.66 52.46 51.36 52.46 51.28

ILAFCFaS + MultiMobileNet 93.59 93.61 93.59 93.59 52.19 52.27 52.19 50.46
MultiLightViT 95.17 95.18 95.17 95.17 53.79 53.07 53.79 52.05

To mitigate these risks, we strictly use synthetic data for
model training and never for deceptive content generation.
Our data is generated under controlled, research-focused
conditions, and we ensure that it cannot be misused to
impersonate real individuals. We also emphasize the model’s
limitations and advocate for transparency in data sources
when deploying biometric systems.

We believe the benefits of this work—improving model
generalization, fairness, and performance on underrepre-
sented demographics—outweigh the risks, especially when
paired with responsible research practices and open discus-
sion of societal implications.
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